Why we must scrutinise the magical thinking behind geoengineering

(This piece was originally written in the wake of the Paris Agreement. I’ve tidied it up and put it here for safe-keeping).

‘In time of trouble, I had been trained since childhood, read, learn, work it up, go to the literature. Information is control.’

Joan Didion, The Year of Magical Thinking


In The Year of Magical Thinking, novelist Joan Didion reflects on her attempts to think through the grief brought about by her husband’s death and her daughter’s illness. In trying to understand the incomprehensible and control the uncontrollable, she finds herself victim to a childlike belief that she can wish her way to a new reality. This magical thinking seems egregiously unscientific, and yet, when it comes to new technologies, our finest minds can succumb to something similar.

It is hard to know whether to be optimistic or pessimistic about the Paris agreement, whether to celebrate the consensus on new possibilities, mourn the opportunities already missed, or do both at once. This ambivalence is complicated by the strong thread of optimism that is woven into the future to which we have now become signatories. The agreement inscribes a set of technological promises that have received little democratic scrutiny. If we are to deliver on the vision of Paris, we must urgently confront the politics of radical innovation.

Imaginary technologies

A few commentators have pointed out that the projections of future climate change that provide the scientific ingredients of the Paris agreement are themselves based on political choices. The target of two degrees’ warming has been an anchor for climate negotiations for a long time, even as emissions have continued to rise. The arithmetic of the ‘Intended national determined contributions’ to climate change mitigation agreed in Paris does not currently add up. The gap between expectation and action has been filled by a new sort of hope, that technological means will emerge to extract greenhouse gases from our atmosphere. Imaginary ‘negative emissions technologies’ are built into all of the IPCC scenarios that point to less than two degrees’ warming.

Keeping global warming below this target, let alone the 1.5-degree aspiration, will demand extraordinary innovation in order to develop systems that not only produce no greenhouse gases, but actively remove them from the atmosphere. In order to secure a climate consensus, we have become signatories to a future that is radically different from the past; we have invested our hopes in emerging technologies about which very little is known. So-called ‘geoengineering’ is profoundly uncertain. It brings with it political and ethical baggage, largely ignored in the Paris negotiations. The more controversial geoengineering proposals known as ‘Solar Radiation Management’ (SRM) have been put to one side for the time being, but planetary-scale Carbon Dioxide Removal also represents a form of magical thinking.

The sociology of expectations

Recognising the power of technological promises to shape our world, sociologists are turning their attention to how futures get imagined. The ‘sociology of expectations’ would say that technological visions, often delivered by those who claim privileged access to emerging innovations, are not mere predictions. Instead, they are a form of performance. Futures may be advertised as inevitable, just around the corner or already here in order to make them more likely. A recent commercial for a Mercedes self-driving car runs like this: ‘Is the world truly ready for a vehicle that can drive itself? Ready or not, the future is here. Introducing the 2017 E-Class from Mercedes-Benz, a concept car that’s already a reality.’ The easiest way to sell a future technology is to pretend that it’s already possible.

Science and technology need a degree of salesmanship. Hype is built over genomics, nanotechnology and other fields in order to attract attention and investment. Hidden from view is the otherwise obvious fact that the future is a result of product of choices in the present. Moore’s Law, to take an example, is presented as though it is a law of nature: computers will keep doubling their power over a fixed period. This ‘law’ is in reality a roadmap, the product of conscious decisionmaking by the semiconductor industry. A recent article in Nature described the effort, organisation and investment required to make exponential technical change seem inevitable. It is only now that semiconductor innovation appears to be running out of physical space on silicon chips that the industry is publicly discussing alternative directions for innovation.

The naturalising of technological progress is disempowering, and it leads to some very bad policy decisions. Expectations around new technologies tend to exclude complexity. The detail about what it would take to realise a particular technological future, which might draw in an unpredictable cast of innovators, consumers, users, regulators, protesters, artists, designers and others, is underdrawn, in part because it is profoundly uncertain and in part because a more accurate picture would obscure the interests of technological optimists. This leads to a paradox: the earlier and more uncertain the technology, the less evidence there is to constrain the hype around it. If downsides are presented, they are often of an apocalyptic flavour, as with the recent concerns expressed by Elon Musk, Stephen Hawking and co that Artificial Intelligence poses an existential threat to humanity. The mundane but more powerful ways in which technologies differentially benefit people do not feature.

It is only once technological promises meet scientific, political and public attention that their complexities start to be made apparent. A wider lens sees that Moore’s law is the exception rather than the rule. Nuclear energy, once deemed ‘too cheap to meter’, has only become more expensive over time as its full social complexity and long-term costs are realised. New waves of technological optimism are accompanied by an amnesia, a sense that, this time, it will be different and our hype will be justified.

Technological fixes

In a recent book, former president of the European Research Council Helga Nowotny defines a technological promise as ‘a risk-free mortgage on the future’. She quotes Hannah Arendt, who argued that ‘By bringing the promised future into the present we are able to create reliability and predictability which would otherwise be out of reach’. The promises we make to ourselves about the future could be said to be a defining feature of human modernity. The trouble is with our hypocrisy: we treat the promises of politicians with extreme scepticism, but those surrounding technology are harder to argue with. Unlike other parts of climate agreements, our technological promises can never be legally binding. Morality and responsibility are vital.

Until we ask difficult questions, new technologies are politically seductive because they seem to offer a way out of politically intractable swamps. If politics is a Gordian knot then technology promises a sword with which to cut through. We do not need to deal with the difficulties of incumbent interests if technologies can avoid such dilemmas. In some cases, our fixes work fine. Vaccines, on the whole, offer a clean solution to the problem of some infectious diseases. But in many cases, technological fixes are ugly, blunt instruments, not sharpened swords.

Geoengineering at first glance offers a handy get-out-of-jail-free card for climate change, the most wicked of wicked problems. But, for anyone who pays closer attention, the fix looks deeply flawed. The most melodramatic geoengineering proposals include schemes to inject sulphate particles into the stratosphere, attempting to mimic the effects of massive volcanic eruptions like that of Tambora in 1815, which cooled the Earth for two years. Scientists have been quick to point out the flaws with this idea. While lowering average global temperature we would also likely disrupt regional weather, as Tambora’s eruption did during 1816 – the ‘year without a summer’; oceans would continue to acidify as Carbon Dioxide built up beneath our sunshade; and the offer of a technological fix would surely destabilise fragile international attempts at climate change mitigation.

For all of the discussion of geoengineering’s impacts, however, there has been relatively little interest in the question of whether it is at all possible. Scientists have been happier to run with the speculation. David Keith, the world’s most prominent SRM geoengineering researcher, opens his book by arguing that

‘It is possible to cool the planet by injecting reflective particles of sulfuric acid into the upper atmosphere… it is cheap and technically easy’.

The IPCC’s Fifth Assessment Report in 2013 was concerned about possible ‘side effects’, but still decided to include geoengineering in the policymakers’ summary of working group 1, which assesses the ‘physical science basis’ for climate change, rather than policy responses. Only six years earlier, IPCC had dismissed such ideas as ‘speculative and unproven’. Where interdisciplinary assessments have begun, such as those of the Royal Society or the UK Integrated Assessment of Geoengineering Proposals project, the scale of our uncertainty becomes clear. SRM only looks ‘cheap and technically easy’ if we choose not to ask about its full costs.

Few people think that carbon dioxide removal would be cheap and easy. Reversing the unintended exhausts of the industrial revolution, at speed, presents an unprecedented global engineering challenge. Nevertheless, some are optimistic that tweaks to natural systems – regrowing forests, fertilising the oceans or enhancing the weathering of rocks – or new machines to suck CO2 from the air, will be able to significantly counteract our emissions. For the IPCC, the promise of negative emissions has been domesticated in the form of BECCS – biomass energy with carbon capture and storage – which is seen as the most realistic idea currently on the table. But even with these more modest proposals, the gap between future and present, between idea and workable system, is vast. To see the difficulties, one need only look to those seeking to make small carbon capture and storage plants workable and publicly acceptable.

This doesn’t mean that technology won’t be vital. The future does not look like the past. Indeed, climate action is predicated on the possibility of a future that corrects past mistakes. Innovation will be central to this, and innovation is profoundly unpredictable. The collective energy that gathered behind the ‘Mission Innovation’ clean energy initiative in Paris suggests a promising complement to geopolitical negotiation.

However, if we presume that technologies of the future offer a clean break from our past troubles, we will only be disappointed. The Paris agreement has, by quietly signing up to the promise of negative emissions, sidestepped, and therefore postponed, tough political choices. By including these imaginary technologies in its projections, its forces them closer to reality. We therefore need to urgently ask what it would take to make such ideas work, how to understand their uncertainties and how we might govern them.

The illusion of control

Joan Didion’s eventual conclusion was that the answers were not in the literature, that information was not the same as control. She saw her magical thinking as the product of a culture that forbids grief and demands optimism. While a sense of optimism is important for climate action, we must also maintain our ability to analyse. The IPCC has become a model for the rigour of its scientific treatment of past and possible future climates. Being more scientific about the nature of innovation means resisting what the Royal Society identified as ‘appraisal optimism’. The tools of technology assessment, incorporating the values and knowledge of stakeholders and members of the public as well as experts, need to be applied to the promise of greenhouse gas removal, and this evidence needs to be weighed alongside that from economists and climate scientists. We must be as transparent and sceptical about our technological assumptions as we are about those behind climate science. The illusion of control is a dangerous thing. Wishing for a perfect solution can mean ignoring imperfect but necessary political compromises.

About Jack Stilgoe

Jack Stilgoe is a professor of science and technology policy in the department of Science and Technology Studies, University College London.
This entry was posted in Uncategorized. Bookmark the permalink.

2 Responses to Why we must scrutinise the magical thinking behind geoengineering

  1. Pingback: Week in review – science edition | Climate Etc.

  2. Pingback: Week in review – science edition – Climate- Science.press

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s